cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049703 a(0) = 0; for n>0, a(n) = A005598(n)/2.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 68, 89, 112, 141, 173, 209, 249, 297, 348, 408, 472, 542, 617, 703, 793, 893, 999, 1114, 1235, 1370, 1509, 1663, 1825, 1997, 2177, 2369, 2567, 2783, 3008, 3245, 3490, 3755, 4026, 4318
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A049703:= func< n | n eq 0 select 0 else (1 +(&+[(n-j+1)*EulerPhi(j): j in [1..n]]))/2 >;
    [A049703(n): n in [0..60]]; // G. C. Greubel, Dec 08 2022
    
  • Mathematica
    A005598[n_]:= A005598[n]= 1 +Sum[(n-j+1)*EulerPhi[j], {j,n}];
    A049703[n_]:= If[n==0, 0, A005598[n]/2];
    Table[A049703[n], {n,0,50}] (* G. C. Greubel, Dec 08 2022 *)
  • SageMath
    @CachedFunction
    def A049703(n): return 0 if (n==0) else (1 + sum((n-j+1)*euler_phi(j) for j in range(1,n+1)))/2
    [A049703(n) for n in range(61)] # G. C. Greubel, Dec 08 2022

Formula

a(n) = (1/2)*Sum_{j=0..n} T(j, n-j), for array T in A049695.
a(n) = (1/2)*(1 + (n+1)*A002088(n) - A011755(n)), with a(0) = 0. - G. C. Greubel, Dec 08 2022

Extensions

Edited by N. J. A. Sloane, Apr 04 2007.