A049704 Array T read by antidiagonals; T(i,j)=number of nonnegative slopes of lines determined by two points in the triangular set {(x,y): 0<=x<=i, 0<=y<=j-j*x/i} of lattice points.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 6, 5, 4, 1, 1, 1, 1, 4, 6, 6, 6, 6, 4, 1, 1, 1, 1, 5, 6, 8, 10, 8, 6, 5, 1, 1, 1, 1, 5, 7, 9, 10, 10, 9, 7, 5, 1, 1, 1, 1, 6, 9, 11, 11, 12, 11, 11
Offset: 0
Examples
The array begins: 0 1 1 1 1 1 1 1 1... 1 1 1 1 1 1 1 1 1... 1 1 2 2 3 3 4 4 5... 1 1 2 4 4 5 6 6 7... 1 1 3 4 6 6 8 9 11... ...
Crossrefs
Programs
-
Mathematica
t[i_,j_] := If[i==0||j==0, 1-KroneckerDelta[i+j], 1+Length[Union[Divide@@#& /@ Select[-Subtract@@@Subsets[Flatten[Table[{x,y}, {x,0,i}, {y,0,j-j*x/i}], 1], {2}], And@@Positive/@#&]]]]; (*Table[t[i,j], {i,0,10}, {j,0,10}]//TableForm*) Flatten@Table[t[j,i-j], {i,0,20}, {j,0,i}] (* Andrey Zabolotskiy, Jun 09 2017 *)
Extensions
Name corrected by Michel Marcus and Andrey Zabolotskiy, Jun 10 2017