cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A213849 Rectangular array: (row n) = b**c, where b(h) = ceiling(h/2), c(h) = floor(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 8, 6, 4, 2, 14, 11, 9, 5, 3, 20, 17, 14, 10, 6, 3, 30, 26, 23, 17, 13, 7, 4, 40, 36, 32, 26, 20, 14, 8, 4, 55, 50, 46, 38, 32, 23, 17, 9, 5, 70, 65, 60, 52, 44, 35, 26, 18, 10, 5, 91, 85, 80, 70, 62, 50, 41, 29, 21, 11, 6
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Principal diagonal: A049778.
Antidiagonal sums: A213850.
Row 1, (1,1,2,2,3,3,...)**(1,1,2,2,3,3,...).
Row 2, (1,1,2,2,3,3,...)**(1,2,2,3,3,4,...).
Row 3, (1,1,2,2,3,3,...)**(2,2,3,3,4,4,...).
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...2...5....8....14...20...30...40
1...3...6....11...17...26...36...50
2...4...9....14...23...32...46...60
2...5...10...17...26...38...52...70
3...6...13...20...32...44...62...80
		

Crossrefs

Cf. A212500.

Programs

  • Mathematica
    b[n_]:=Floor[(n+1)/2];c[n_]:=Floor[(n+1)/2];
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}]  (* A213849 *)
    d=Table[t[n,n],{n,1,50}] (* A049778 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    s1=Table[s[n],{n,1,50}] (* A213850 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(ceiling(n/2) + m(n)*x - floor(n/2)*x^2), where m(n) = (n+1 mod 2), and g(x) = (1+x)^2 *(1-x)^4.

A095800 Triangle T(n,k) = abs( k *( (2*n+1)*(-1)^(n+k)+2*k-1) /4 ) read by rows, 1<=k<=n.

Original entry on oeis.org

1, 1, 4, 2, 2, 9, 2, 6, 3, 16, 3, 4, 12, 4, 25, 3, 8, 6, 20, 5, 36, 4, 6, 15, 8, 30, 6, 49, 4, 10, 9, 24, 10, 42, 7, 64, 5, 8, 18, 12, 35, 12, 56, 8, 81, 5, 12, 12, 28, 15, 48, 14, 72, 9, 100, 6, 10, 21, 16, 40, 18, 63, 16, 90, 10, 121, 6, 14, 15, 32, 20, 54, 21, 80, 18, 110, 11, 144, 7, 12, 24, 20, 45, 24, 70, 24, 99, 20, 132
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2004

Keywords

Comments

1. Triangles of increasing sizes are subdivided using a triangular array. Then as shown on p. 83 of Conway and Guy, the series A002717 (1, 5, 13, 27, 48, 78, 118...) denotes the total number of triangles in each figure.
2. As a conjecture, each row of A095800 could be a distribution governing distinct subsets of types of triangles having the sum in the "How Many Triangles" series A002717. Thus 1 = 1; 5 = (1 + 4), 13 = (2 + 2 + 9)...etc.
3. Powers of the matrices have alternating signs such that odd rows begin with (+) and even rows begin with (-), as: 1; -1, 4; 2, -2, 9; -2, 6, -3, 16; 3, -4, 12, -4, 25;... Signed row sums = A049778: 1, 3, 9, 17, 32, 48...

Examples

			1. [1 0 0 / 1 -2 0 / 1 -2 3]^2 = [1 0 0 / 1 -4 0 / 2 -2 9]. Then change the (-) signs to (+) getting the first 3 rows of the triangle:
1;
1, 4;
2, 2, 9;
2, 6, 3, 16;
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag New York, 1996, p. 83.

Crossrefs

Cf. A002717 (row sums), A049778.

Programs

  • Maple
    A095800 := proc(n,k) k/4*( (2*n+1)*(-1)^(n+k)+2*k-1) ; abs(%) ; end proc:
    seq(seq(A095800(n,k),k=1..n),n=1..16) ; # R. J. Mathar, Apr 17 2011
  • PARI
    T(n,k) = abs( k *( (2*n+1)*(-1)^(n+k)+2*k-1) /4 );
    for(n=1,20,for(m=1,n,print1(T(n,m),", ")));
    \\ Joerg Arndt, Mar 05 2014
    
  • Python
    # Generates the b-file
    i=1
    for n in range(1,126):
        for k in range(1,n+1):
            print(str(i)+" "+str(abs(k*((2*n+1)*(-1)**(n+k)+2*k-1)//4)))
            i+=1 # Indranil Ghosh, Feb 17 2017

Formula

Let M(n,k) = (-1)^(k+1)*k, 1<=k<=n be the infinite lower triangular matrix with 1, -2, 3,.. up to the diagonal, and the upper triangular part all zeros. The 3x3 submatrix would be [1 0 0 / 1 -2 0 / 1 -2 3]. The current triangle contains the absolute values of the matrix square M^2.

Extensions

Replaced NAME by closed form and inserted a missing row. - R. J. Mathar, Apr 17 2011

A134447 A002260 * A128174.

Original entry on oeis.org

1, 1, 2, 4, 2, 3, 4, 6, 3, 4, 9, 6, 8, 4, 5, 9, 12, 8, 10, 5, 6, 16, 12, 15, 10, 12, 6, 7, 16, 20, 15, 18, 12, 14, 7, 8, 25, 20, 24, 18, 21, 14, 16, 8, 9, 25, 30, 24, 28, 21, 24, 16, 18, 9, 10
Offset: 1

Views

Author

Gary W. Adamson, Oct 25 2007

Keywords

Comments

Row sums = A049778: (1, 3, 9, 17, 32, 50, 78, ...).

Examples

			First few rows of the triangle:
   1;
   1,  2;
   4,  2,  3;
   4,  6,  3,  4;
   9,  6,  8,  4,  5;
   9, 12,  8, 10,  5,  6;
  16, 12, 15, 10, 12,  6,  7;
  ...
		

Crossrefs

Formula

A002260 * A128174 as infinite lower triangular matrices.
Showing 1-4 of 4 results.