cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049790 Triangular array T read by rows: T(n,k) = Sum_{j=1..k} floor(n/floor(k/j)).

Original entry on oeis.org

1, 2, 3, 3, 4, 7, 4, 6, 9, 11, 5, 7, 11, 13, 18, 6, 9, 14, 16, 22, 24, 7, 10, 16, 18, 25, 27, 34, 8, 12, 18, 22, 29, 31, 39, 43, 9, 13, 21, 24, 32, 35, 44, 47, 55, 10, 15, 23, 27, 37, 39, 49, 53, 61, 66, 11, 16, 25, 29, 40, 42, 53, 57, 66, 71, 82, 12, 18, 28, 33, 44, 48, 59, 64, 74, 79, 91, 94
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  2,  3;
  3,  4,  7;
  4,  6,  9, 11;
  5,  7, 11, 13, 18;
  6,  9, 14, 16, 22, 24;
  7, 10, 16, 18, 25, 27, 34;
  8, 12, 18, 22, 29, 31, 39, 43;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..15], n-> List([1..n], k-> Sum([1..k], j-> Int(n/Int(k/j)) )))); # G. C. Greubel, Dec 09 2019
  • Magma
    [(&+[Floor(n/Floor(k/j)): j in [1..k]]): k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 09 2019
    
  • Maple
    seq(seq( add(floor(n/floor(k/j)), j=1..k), k=1..n), n=1..15); # G. C. Greubel, Dec 09 2019
  • Mathematica
    Table[Sum[Floor[n/Floor[k/j]], {j, k}], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 09 2019 *)
  • PARI
    T(n,k) = sum(j=1,k, n\(k\j));
    for(n=1, 15, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 09 2019
    
  • Sage
    [[sum(floor(n/floor(k/j)) for j in (1..k)) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 09 2019