A049795 a(n) = T(n,n-3), array T as in A049790.
1, 2, 3, 4, 7, 14, 18, 29, 35, 49, 57, 74, 84, 105, 115, 140, 155, 180, 195, 228, 244, 278, 296, 332, 356, 397, 416, 460, 487, 534, 559, 612, 637, 691, 722, 779, 814, 872, 901, 968, 1007, 1073, 1107, 1180, 1218, 1292, 1333, 1407
Offset: 4
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1000
Programs
-
GAP
a:= function(n) if n<7 then return n-3; else return Sum([1..n-6], j-> Int((n-3)/Int((n-6)/j)) ); fi; end; List([4..60], n-> a(n) ); # G. C. Greubel, Dec 10 2019
-
Magma
[n lt 7 select n-3 else (&+[Floor((n-3)/Floor((n-6)/j)): j in [1..n-6]]): n in [4..60]]; // G. C. Greubel, Dec 10 2019
-
Maple
seq( `if`(n<7, n-3, add(floor((n-3)/floor((n-6)/j)), j=1..n-6)), n=4..60); # G. C. Greubel, Dec 10 2019
-
Mathematica
Table[If[n<7, n-3, Sum[Floor[(n-3)/Floor[(n-6)/j]], {j,n-6}]], {n,4,60}] (* G. C. Greubel, Dec 10 2019 *)
-
PARI
a(n) = if(n<7, n-3, sum(j=1,n-6, (n-3)\((n-6)\j)) ); vector(60, n, a(n+3) ) \\ G. C. Greubel, Dec 10 2019
-
Sage
def a(n): if (n<7): return n-3 else: return sum(floor((n-3)/floor((n-6)/j)) for j in (1..n-6)) [a(n) for n in (4..60)] # G. C. Greubel, Dec 10 2019