cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049797 a(n) = Sum_{k = 2..n} T(n,k), array T as in A049800.

Original entry on oeis.org

0, 0, 0, 2, 0, 4, 4, 4, 6, 14, 4, 14, 20, 16, 16, 30, 22, 38, 32, 30, 44, 64, 38, 50, 68, 68, 66, 92, 66, 94, 94, 96, 122, 130, 90, 124, 154, 158, 136, 174, 148, 188, 194, 172, 210, 254, 196, 228, 240, 248, 258, 308, 282, 302, 284
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049800.

Programs

  • GAP
    List([1..60], n-> Sum([3..n], k-> (n+1) mod Int((k+1)/2)) ); # G. C. Greubel, Dec 09 2019
  • Magma
    [0,0] cat [ (&+[(n+1) mod Floor((k+1)/2): k in [3..n]]): n in [3..60]]; // G. C. Greubel, Dec 09 2019
    
  • Maple
    seq(add((n+1) mod floor((k+1)/2), k = 3..n), n = 1..60);
  • Mathematica
    Table[Sum[Mod[n+1, Floor[(k+1)/2]], {k,3,n}], {n,60}] (* G. C. Greubel, Dec 09 2019 *)
  • PARI
    vector(60, n, sum(k=3,n, (n+1)%((k+1)\2)) ) \\ G. C. Greubel, Dec 09 2019
    
  • Sage
    [sum( (n+1)%floor((k+1)/2) for k in (3..n)) for n in (1..60)] # G. C. Greubel, Dec 09 2019