A049816 Triangular array T read by rows: T(n,k) = number of nonzero remainders when Euclidean algorithm acts on n and k, for k=1..n, n>=1.
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0
Offset: 1
Examples
Triangle begins: 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0, ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Crossrefs
Row sums give A049817.
Programs
-
Maple
T:= proc(x, y) option remember; `if`(y=0, -1, 1+T(y, irem(x, y))) end: seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Nov 29 2023
-
Mathematica
R[n_, k_] := R[n, k] = With[{r = Mod[n, k]}, If[r == 0, 1, R[k, r] + 1]]; T[n_, k_] := R[n, k] - 1; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 12 2019, after Robert Israel in A107435 *)