A049862 Products of two Fibonacci numbers with distinct indices.
0, 1, 2, 3, 5, 6, 8, 10, 13, 15, 16, 21, 24, 26, 34, 39, 40, 42, 55, 63, 65, 68, 89, 102, 104, 105, 110, 144, 165, 168, 170, 178, 233, 267, 272, 273, 275, 288, 377, 432, 440, 442, 445, 466, 610, 699, 712, 714, 715, 720, 754, 987, 1131
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Mohammad K. Azarian, The Value of a Series of Reciprocal Fibonacci Numbers, Problem B-1133, Fibonacci Quarterly, Vol. 51, No. 3, August 2013, p. 275. Solution published in Vol. 52, No. 3, August 2014, pp. 277-278.
- MathOverflow, Distinctness of products of Fibonacci numbers
Programs
-
Maple
fib:= combinat:-fibonacci: sort(convert(select(`<`,{0,seq(seq(fib(i)*fib(j),i=j+1..100),j=1..100)},fib(101)),list)); # Robert Israel, May 11 2016
-
Mathematica
Take[Union[Flatten[Table[Fibonacci[i]*Fibonacci[j], {i, 0, 100}, {j, i + 1, 100}]]], 100] (* Clark Kimberling, May 11 2016 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isok(n) = {if ((n==0) || (n==1), return (1)); fordiv(n, d, if (d^2 < n, if (isfib(d) && isfib(n/d), return (1)););); return(0);} \\ Michel Marcus, May 27 2019
-
PARI
lista(nn) = {my(out = List([0])); for (i=0, nn, for (j=i+1, nn, listput(out, fibonacci(i)*fibonacci(j)););); Vec(vecsort(select(x->(x < fibonacci(nn+1)), out), , 8));} \\ Michel Marcus, May 27 2019
Extensions
Name changed to conform with A272949 et al. by Clark Kimberling, Jun 18 2016
Comments