A049863 a(n) = Sum{a(k): k=0,1,2,...,n-4,n-2,n-1}; a(n-3) is not a summand; initial terms are 0,3,4.
0, 3, 4, 7, 11, 21, 39, 74, 138, 258, 481, 898, 1676, 3129, 5841, 10904, 20355, 37998, 70933, 132415, 247187, 461439, 861396, 1608020, 3001788, 5603619, 10460614, 19527460, 36453089, 68049183, 127031520, 237137411, 442678728, 826375119, 1542644347, 2879747377
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 1).
Programs
-
Mathematica
LinearRecurrence[{2,0,-1,1},{0,3,4,7},40] (* or *) CoefficientList[ Series[(x^3+2x^2-3x)/(x^4-x^3+2x-1),{x,0,50}],x] (* Harvey P. Dale, Apr 26 2011 *)
Formula
a(n) = 2*a(n-1) - a(n-3) + a(n-4).
G.f.: (x^3+2x^2-3x)/(x^4-x^3+2x-1). - Harvey P. Dale, Apr 26 2011