cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049885 a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 15, 30, 60, 91, 197, 402, 807, 1616, 3233, 6466, 12932, 19399, 42031, 85679, 172167, 344739, 689683, 1379472, 2758975, 5517980, 11035975, 22071958, 44143919, 88287840, 176575681, 353151362, 706302724, 1059454087
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Nov 07 2019: (Start)
a(4) = -a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = -a(2) + a(1) + a(2) + a(3) = 2.
a(5) = -a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = -a(1) + a(1) + a(2) + a(3) + a(4) = 4.
a(6) = -a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = -a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 7.
a(7) =  -a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = -a(3) +  Sum_{i = 1..6} a(i) = 15.
a(8) =  -a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = -a(2) +  Sum_{i = 1..7} a(i) = 30. (End)
		

Crossrefs

Cf. A006257, A049933 (similar, but with plus a(m)).

Programs

  • Maple
    s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
    a := proc(n) option remember;
    `if`(n < 4, 1, s(n - 1) - a(Bits:-Iff(n - 2, n - 2) + 3 - n)):
    end proc:
    seq(a(n), n = 1..34); # Petros Hadjicostas, Nov 07 2019
  • PARI
    lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 1; my(sa = vecsum(va)); for (n=4, nn, va[n] = sa - va[2 - n + 2^ceil(log(n-1)/log(2))]; sa += va[n]; ); va; } \\ Petros Hadjicostas, Apr 27 2020 (with nn > 2)

Formula

From Petros Hadjicostas, Nov 07 2019: (Start)
a(n) = -a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4.
a(n) = -a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End)

Extensions

Name edited by Petros Hadjicostas, Nov 07 2019