cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049893 a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.

Original entry on oeis.org

1, 1, 3, 4, 8, 13, 27, 56, 112, 169, 367, 748, 1501, 3006, 6013, 12028, 24056, 36085, 78185, 159377, 320259, 641271, 1282923, 2566044, 5132145, 10264346, 20528721, 41057456, 82114917, 164229838, 328459677, 656919356, 1313838712, 1970758069, 4269975817, 8704181473
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049885.

Programs

  • Maple
    s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
    a := proc(n) option remember;
    `if`(n < 4, [1,1,3][n], s(n - 1) - a(2^ceil(log[2](n - 1)) + 2 - n)):
    end proc:
    seq(a(n), n = 1..34); # Petros Hadjicostas, Nov 11 2019
  • Mathematica
    nn = 36; a[1] = a[2] = 1; a[3] = 3; s = 5; Do[Set[k, s - a[2^(Ceiling@ Log2[n - 1]) + 2 - n]]; a[n] = k; s += k, {n, 4, nn}]; Array[a, nn] (* Michael De Vlieger, Oct 21 2024 *)

Extensions

Name edited by Petros Hadjicostas, Nov 11 2019
More terms from Michael De Vlieger, Oct 21 2024