cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049962 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.

Original entry on oeis.org

1, 2, 4, 8, 17, 33, 67, 136, 276, 545, 1091, 2184, 4372, 8753, 17522, 35078, 70225, 140315, 280631, 561264, 1122532, 2245073, 4490162, 8980358, 17960785, 35921710, 71843689, 143687924, 287376941, 574756070, 1149516521, 2299041811
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049914 (similar, but with minus a(m)), A049915 (similar, but with minus a(2*m)), A049963 (similar, but with plus a(2*m)).

Programs

  • Maple
    s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc;
    a := proc(n) option remember; `if`(n < 4, [1, 2, 4][n], s(n - 1) + a(-2^ceil(log[2](n - 1) - 1) + n - 1)); end proc;
    seq(a(n), n = 1 .. 40); # Petros Hadjicostas, Apr 23 2020
  • PARI
    lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 4; my(sa = vecsum(va)); for (n=4, nn, va[n] = sa + va[n - 1 - 2^ceil(-1 + log(n-1)/log(2))]; sa += va[n]; ); va; } \\ Petros Hadjicostas, Apr 26 2020 (with nn > 2).

Extensions

Name edited by Petros Hadjicostas, Apr 23 2020