A049963 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 2 and a(3) = 4.
1, 2, 4, 9, 25, 43, 93, 220, 617, 1016, 2039, 4112, 8401, 17598, 38292, 90070, 252612, 415156, 830319, 1660672, 3321521, 6643838, 13290772, 26595030, 53262532, 106850150, 214945816, 434874798, 889700788, 1859656696
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, Sep 25 2019: (Start) a(4) = a(1 + A006257(4-2)) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 9. a(7) = a(1 + A006257(7-2)) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6) = 93. (End)
Crossrefs
Programs
-
Maple
a := proc(n) local i; option remember; if n < 4 then return [1, 2, 4][n]; end if; add(a(i), i = 1 .. n - 1) + a(2*n - 3 - Bits:-Iff(n - 2, n - 2)); end proc; seq(a(n), n = 1..40); # Petros Hadjicostas, Sep 25 2019, courtesy of Peter Luschny
Formula
a(n) = a(1 + A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4 with a(1) = 1, a(2) = 2 and a(3) = 4. - Petros Hadjicostas, Sep 25 2019
Extensions
Name edited by Petros Hadjicostas, Sep 25 2019
Comments