A049990 a(n) is the number of arithmetic progressions of 2 or more positive integers, nondecreasing with sum n.
0, 1, 2, 3, 3, 6, 4, 6, 8, 8, 6, 13, 7, 10, 15, 12, 9, 19, 10, 16, 20, 15, 12, 26, 16, 17, 25, 21, 15, 34, 16, 22, 30, 22, 24, 40, 19, 24, 35, 32, 21, 45, 22, 30, 47, 29, 24, 51, 28, 37, 46, 35, 27, 56, 36, 40, 51, 36, 30, 70, 31, 38, 61, 43
Offset: 1
Keywords
Examples
a(6) counts these 6 partitions of 6: [5,1], [4,2], [3,3], [3,2,1], [2,2,2], [1,1,1,1,1,1].
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Sadek Bourbaki and Nevrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
- Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
- Graeme McRae, Counting arithmetic sequences whose sum is n.
- Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]
- Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
- Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
- Wikipedia, Arithmetic progression.
Crossrefs
Programs
-
Mathematica
(* Program 1 *) Map[Length[Map[#[[2]] &, Select[Map[{Apply[SameQ, Differences[#]], #} &, IntegerPartitions[#]], #[[1]] &]]] &, Range[40]] - 1 (* Peter J. C. Moses, Dec 24 2016 *) (* Program 2 *) enumerateArithmeticPartitions[n_] := Module[{allDivs, oddDivs}, {allDivs, oddDivs} = {#, Select[#, OddQ]} &[Divisors[n]]; Map[Reverse, Union[Flatten[Table[If[OddQ[cDiff], (Flatten[ Map[{If[(2 n - #) cDiff <= # (# - 2), {Table[(cDiff + # - 2 cDiff n/#)/2 + cDiff term, {term, 0, 2 n/# - 1}]}, {}], If[# (# - 1) cDiff <= 2 (n - #), {Table[(cDiff + 2 n/# - # cDiff)/2 + cDiff term, {term, 0, # - 1}]}, {}]} &, oddDivs], 2]), (Flatten[Map[If[(n - #) cDiff <= 2 # (# - 1), {Table[(cDiff + 2 # - n cDiff/#)/2 + cDiff term, {term, 0, n/# - 1}]}, {}] &, allDivs], 1])], {cDiff, 0, n - 2}], 1]]]]; Join[{0}, Map[Length[enumerateArithmeticPartitions[#]] - 1 &, Range[2, 300]]] n = 12; enumerateArithmeticPartitions[12] (* shows the desired partition of n *) (* Peter J. C. Moses, Dec 24 2016 *)
Formula
From Petros Hadjicostas, Sep 29 2019: (Start)
G.f.: Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988]
(End)