cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050032 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique value such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.

Original entry on oeis.org

1, 1, 3, 4, 7, 8, 11, 18, 29, 30, 33, 40, 51, 80, 113, 164, 277, 278, 281, 288, 299, 328, 361, 412, 525, 802, 1083, 1382, 1743, 2268, 3351, 5094, 8445, 8446, 8449, 8456, 8467, 8496, 8529, 8580, 8693, 8970, 9251, 9550, 9911, 10436
Offset: 1

Views

Author

Keywords

Crossrefs

Similar sequences with different initial conditions are A050024 (1,1,1), A050028 (1,1,2), A050036 (1,1,4), A050040 (1,2,1), A050044 (1,2,2), A050048 (1,2,3), A050052 (1,2,4), A050056 (1,3,1), A050060 (1,3,2), A050064 (1,3,3), A050068 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 1, 3][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3)):
    end proc:
    seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 3}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 14 2019