cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A050051 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.

Original entry on oeis.org

1, 2, 3, 5, 10, 12, 17, 29, 58, 60, 65, 77, 106, 166, 243, 409, 818, 820, 825, 837, 866, 926, 1003, 1169, 1578, 2398, 3235, 4161, 5330, 7728, 11889, 19617, 39234, 39236, 39241, 39253, 39282, 39342, 39419, 39585, 39994, 40814
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Maple
    a := proc(n) option remember;
         `if`(n < 4, [1,2,3][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 2)):
         end proc:
    seq(a(n), n = 1..40); # Petros Hadjicostas, Nov 18 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 3}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 18 2019

A050031 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 10, 17, 34, 35, 38, 45, 62, 97, 142, 239, 478, 479, 482, 489, 506, 541, 586, 683, 922, 1401, 1890, 2431, 3114, 4515, 6946, 11461, 22922, 22923, 22926, 22933, 22950, 22985, 23030, 23127, 23366, 23845, 24334
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050035, A050039, A050043, A050047, A050051, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 2}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
  • PARI
    lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 2; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ Petros Hadjicostas, May 10 2020

Extensions

Name edited by Petros Hadjicostas, May 10 2020

A050039 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(2) = 4.

Original entry on oeis.org

1, 1, 4, 5, 10, 11, 16, 27, 54, 55, 60, 71, 98, 153, 224, 377, 754, 755, 760, 771, 798, 853, 924, 1077, 1454, 2209, 2980, 3833, 4910, 7119, 10952, 18071, 36142, 36143, 36148, 36159, 36186, 36241, 36312, 36465, 36842, 37597, 38368
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050043, A050047, A050051, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 4}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
  • PARI
    lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 4; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ Petros Hadjicostas, May 15 2020

Extensions

Name edited by Petros Hadjicostas, May 15 2020

A050043 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.

Original entry on oeis.org

1, 2, 1, 3, 6, 8, 11, 19, 38, 40, 43, 51, 70, 110, 161, 271, 542, 544, 547, 555, 574, 614, 665, 775, 1046, 1590, 2145, 2759, 3534, 5124, 7883, 13007, 26014, 26016, 26019, 26027, 26046, 26086, 26137, 26247, 26518, 27062, 27617
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050047, A050051, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 1}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
  • PARI
    lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 1; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ Petros Hadjicostas, May 15 2020

Extensions

Name edited by Petros Hadjicostas, May 15 2020

A050047 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.

Original entry on oeis.org

1, 2, 2, 4, 8, 10, 14, 24, 48, 50, 54, 64, 88, 138, 202, 340, 680, 682, 686, 696, 720, 770, 834, 972, 1312, 1994, 2690, 3460, 4432, 6426, 9886, 16312, 32624, 32626, 32630, 32640, 32664, 32714, 32778, 32916, 33256, 33938, 34634
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050051, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 2}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
  • PARI
    lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 2; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ Petros Hadjicostas, Jul 19 2020

Extensions

Name edited by Petros Hadjicostas, Jul 19 2020

A050055 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.

Original entry on oeis.org

1, 2, 4, 6, 12, 14, 20, 34, 68, 70, 76, 90, 124, 194, 284, 478, 956, 958, 964, 978, 1012, 1082, 1172, 1366, 1844, 2802, 3780, 4862, 6228, 9030, 13892, 22922, 45844, 45846, 45852, 45866, 45900, 45970, 46060, 46254, 46732
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 4}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)
  • PARI
    lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 4; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va;} \\ Petros Hadjicostas, Jul 19 2020

Extensions

Name edited by Petros Hadjicostas, Jul 19 2020

A050059 a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1) and 2^p= 4.

Original entry on oeis.org

1, 3, 1, 4, 8, 11, 15, 26, 52, 55, 59, 70, 96, 151, 221, 372, 744, 747, 751, 762, 788, 843, 913, 1064, 1436, 2183, 2945, 3788, 4852, 7035, 10823, 17858, 35716, 35719, 35723, 35734, 35760, 35815, 35885, 36036, 36408, 37155, 37917
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050055, A050063, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 1}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)

A050063 a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1) and 2^p= 4.

Original entry on oeis.org

1, 3, 2, 5, 10, 13, 18, 31, 62, 65, 70, 83, 114, 179, 262, 441, 882, 885, 890, 903, 934, 999, 1082, 1261, 1702, 2587, 3490, 4489, 5750, 8337, 12826, 21163, 42326, 42329, 42334, 42347, 42378, 42443, 42526, 42705, 43146, 44031
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050055, A050059, A050067, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 2}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)

A050067 a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1) and 2^p= 4.

Original entry on oeis.org

1, 3, 3, 6, 12, 15, 21, 36, 72, 75, 81, 96, 132, 207, 303, 510, 1020, 1023, 1029, 1044, 1080, 1155, 1251, 1458, 1968, 2991, 4035, 5190, 6648, 9639, 14829, 24468, 48936, 48939, 48945, 48960, 48996, 49071, 49167, 49374, 49884
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050055, A050059, A050063, A050071 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 3}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)

A050071 a(n) = a(n-1)+a(m), where m=2n-2-2^(p+1) and 2^p= 4.

Original entry on oeis.org

1, 3, 4, 7, 14, 17, 24, 41, 82, 85, 92, 109, 150, 235, 344, 579, 1158, 1161, 1168, 1185, 1226, 1311, 1420, 1655, 2234, 3395, 4580, 5891, 7546, 10941, 16832, 27773, 55546, 55549, 55556, 55573, 55614, 55699, 55808, 56043, 56622
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050055, A050059, A050063, A050067 (similar, but with different initial conditions).

Programs

  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 4}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)
Showing 1-10 of 10 results.