A050037 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
1, 1, 4, 5, 6, 11, 15, 16, 17, 33, 48, 59, 65, 70, 74, 75, 76, 151, 225, 295, 360, 419, 467, 500, 517, 533, 548, 559, 565, 570, 574, 575, 576, 1151, 1725, 2295, 2860, 3419, 3967, 4500, 5017, 5517, 5984, 6403, 6763, 7058, 7283, 7434
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 4, [1, 1, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 08 2019