A050045 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.
1, 2, 2, 4, 5, 9, 11, 13, 14, 27, 38, 47, 52, 56, 58, 60, 61, 121, 179, 235, 287, 334, 372, 399, 413, 426, 437, 446, 451, 455, 457, 459, 460, 919, 1376, 1831, 2282, 2728, 3165, 3591, 4004, 4403, 4775, 5109, 5396, 5631, 5810, 5931
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 4, [1, 2, 2][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)): end proc: seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 2}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 14 2019