A050052 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
1, 2, 4, 5, 9, 10, 14, 23, 37, 38, 42, 51, 65, 102, 144, 209, 353, 354, 358, 367, 381, 418, 460, 525, 669, 1022, 1380, 1761, 2221, 2890, 4270, 6491, 10761, 10762, 10766, 10775, 10789, 10826, 10868, 10933, 11077, 11430, 11788
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 4, [1, 2, 4][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3)): end proc: seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 4}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 14 2019