A050053 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.
1, 2, 4, 6, 7, 13, 17, 19, 20, 39, 56, 69, 76, 82, 86, 88, 89, 177, 263, 345, 421, 490, 546, 585, 605, 624, 641, 654, 661, 667, 671, 673, 674, 1347, 2018, 2685, 3346, 4000, 4641, 5265, 5870, 6455, 7001, 7491, 7912, 8257, 8520, 8697
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 4, [1, 2, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 09 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 09 2019