A050060 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
1, 3, 2, 3, 5, 6, 8, 13, 21, 22, 24, 29, 37, 58, 82, 119, 201, 202, 204, 209, 217, 238, 262, 299, 381, 582, 786, 1003, 1265, 1646, 2432, 3697, 6129, 6130, 6132, 6137, 6145, 6166, 6190, 6227, 6309, 6510, 6714, 6931, 7193, 7574, 8360
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 4, [1, 3, 2][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3)): end proc: seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 2}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 14 2019
Comments