cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050069 a(n) = a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 3.

Original entry on oeis.org

1, 3, 4, 7, 8, 15, 19, 22, 23, 45, 64, 79, 87, 94, 98, 101, 102, 203, 301, 395, 482, 561, 625, 670, 693, 715, 734, 749, 757, 764, 768, 771, 772, 1543, 2311, 3075, 3832, 4581, 5315, 6030, 6723, 7393, 8018, 8579, 9061, 9456, 9757
Offset: 1

Views

Author

Keywords

Comments

In the Mathematica program below, the author of the program uses a(1) = 1, a(2) = 3, and a(3) = 4 as initial conditions. This is not necessary. We get the same sequence using only a(1) = 1 and a(2) = 3 as initial conditions. - Petros Hadjicostas, Nov 13 2019

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 3][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019