A050069 a(n) = a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 3.
1, 3, 4, 7, 8, 15, 19, 22, 23, 45, 64, 79, 87, 94, 98, 101, 102, 203, 301, 395, 482, 561, 625, 670, 693, 715, 734, 749, 757, 764, 768, 771, 772, 1543, 2311, 3075, 3832, 4581, 5315, 6030, 6723, 7393, 8018, 8579, 9061, 9456, 9757
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 3, [1, 3][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)
Extensions
Name edited by Petros Hadjicostas, Nov 08 2019
Comments