A050144 T(n,k) = M(2n-1,n-1,k-1), 0 <= k <= n, n >= 0, where M(p,q,r) is the number of upright paths from (0,0) to (p,p-q) that meet the line y = x+r and do not rise above it.
0, 1, 0, 1, 1, 1, 2, 3, 4, 1, 5, 9, 14, 6, 1, 14, 28, 48, 27, 8, 1, 42, 90, 165, 110, 44, 10, 1, 132, 297, 572, 429, 208, 65, 12, 1, 429, 1001, 2002, 1638, 910, 350, 90, 14, 1, 1430, 3432, 7072, 6188, 3808, 1700, 544, 119, 16, 1
Offset: 0
Examples
Triangle begins: 0 1 0 1 1 1 2 3 4 1 5 9 14 6 1 14 28 48 27 8 1 42 90 165 110 44 10 1 132 297 572 429 208 65 12 1 429 1001 2002 1638 910 350 90 14 1 1430 3432 7072 6188 3808 1700 544 119 16 1
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 29.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Crossrefs
Programs
-
Maple
A050144 := proc(n,k) if n < k then 0; elif k =0 then if n =0 then 0 ; else A000108(n-1) ; end if; elif k = 1 then add( procname(n-1-j,0)*A000108(j+1),j=0..n-1) ; elif k = 2 then add( procname(n-j,1)*A000108(j),j=0..n) ; else add( procname(n-1-j,k-1)*A000108(j),j=0..n-1) ; end if; end proc: seq(seq( A050144(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 30 2024
-
Mathematica
c[n_] := Binomial[2 n, n]/(n + 1); t[n_, k_] := Which[k == 0, c[n - 1], k == 1, Sum[t[n - 1 - j, 0]*c[j + 1], {j, 0, n - 2}], k == 2, Sum[t[n - j, 1]*c[j], {j, 0, n - 1}], k > 2, Sum[t[n - 1 - j, k - 1] c[j + 1], {j, 0, n - 2}]] t[0, 0] = 0; Column[Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Clark Kimberling, Jul 30 2024 *)
Formula
For n > 0: Sum_{k>=0} T(n, k) = binomial(2*n-1, n); see A001700. - Philippe Deléham, Feb 13 2004 [Erroneous sum-formula deleted. R. J. Mathar, Jul 31 2024]
T(n, k)=0 if n < k; T(0, 0)=0, T(n, 0) = A000108(n-1) for n > 0; T(n, 1) = Sum_{j>=0} T(n-1-j, 0)*A000108(j+1); T(n, 2) = Sum_{j>=0} T(n-j, 1)*A000108(j); for k > 2, T(n, k) = Sum_{j>=0} T(n-1-j, k-1)*A000108(j+1). - Philippe Deléham, Feb 13 2004 [Corrected by Sean A. Irvine, Aug 08 2021]
For the column k=0, g.f.: x*C(x); for the column k=1, g.f.: x*C(x)*(C(x)-1); for the column k, k > 1, g.f.: x*C(x)^2*(C(x)-1)^(k-1); where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 13 2004
T(n,0) = A033184(n,2). T(n,1) = A033184(n+1,3), T(n,k) = A033184(n+2,k+2) for k>=2. - R. J. Mathar, Jul 31 2024
Comments