A050157 T(n, k) = S(2n, n, k) for 0<=k<=n and n>=0, where S(p, q, r) is the number of upright paths from (0, 0) to (p, p-q) that do not rise above the line y = x-r.
1, 1, 2, 2, 5, 6, 5, 14, 19, 20, 14, 42, 62, 69, 70, 42, 132, 207, 242, 251, 252, 132, 429, 704, 858, 912, 923, 924, 429, 1430, 2431, 3068, 3341, 3418, 3431, 3432, 1430, 4862, 8502, 11050, 12310, 12750, 12854, 12869, 12870
Offset: 0
Examples
The triangle starts: 1 1, 2 2, 5, 6 5, 14, 19, 20 14, 42, 62, 69, 70 42, 132, 207, 242, 251, 252 132, 429, 704, 858, 912, 923, 924
Crossrefs
Programs
-
Maple
A050157 := (n, k) -> binomial(2*n, n) - binomial(2*n, n+k+1): seq(seq(A050157(n,k), k=0..n), n=0..10); # Peter Luschny, Dec 21 2017
Formula
T(n, k) = Sum_{0<=j<=k} t(n, j), array t as in A039599.
T(n, k) = binomial(2*n, n) - binomial(2*n, n+k+1). - Peter Luschny, Dec 21 2017
Comments