A050158 T(n, k) = S(2*n + 1, n, k + 1) for 0<=k<=n and n >= 0, array S as in A050157.
1, 2, 3, 5, 9, 10, 14, 28, 34, 35, 42, 90, 117, 125, 126, 132, 297, 407, 451, 461, 462, 429, 1001, 1430, 1638, 1703, 1715, 1716, 1430, 3432, 5070, 5980, 6330, 6420, 6434, 6435, 4862, 11934, 18122, 21930, 23630, 24174, 24293
Offset: 0
Examples
Triangle starts: 1 2, 3 5, 9, 10 14, 28, 34, 35 42, 90, 117, 125, 126 132, 297, 407, 451, 461, 462 429, 1001, 1430, 1638, 1703, 1715, 1716
Crossrefs
Programs
-
Maple
A050158 := (n, k) -> binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1): seq(seq(A050158(n,k), k=0..n), n=0..6); # Peter Luschny, Dec 22 2017
Formula
T(n, k) = Sum_{0<=j<=k} t(n, j), array t as in A039598.
T(n, k) = binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1). Peter Luschny, Dec 22 2017
Comments