Original entry on oeis.org
1, 5, 24, 111, 500, 2210, 9632, 41531, 177564, 754014, 3184016, 13382710, 56026984, 233765636, 972504704, 4035441491, 16707488684, 69033916166, 284733161264, 1172510645666, 4821324991064, 19799091571676, 81208982686784, 332726301861086, 1361862906980120
Offset: 0
-
A296770 := n -> add(binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1), k=0..n):
seq(A296770(n), n=0..24);
-
a[n_] := 4^n ((2 (2 + n) Gamma[3/2 + n])/(Sqrt[Pi] Gamma[2 + n]) - 1);
Table[a[n], {n, 0, 24}]
A296662
Table read by rows, the odd rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
Original entry on oeis.org
1, 2, 3, 2, 5, 9, 10, 9, 5, 14, 28, 34, 35, 34, 28, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132, 429, 1001, 1430, 1638, 1703, 1715, 1716, 1715, 1703, 1638, 1430, 1001, 429
Offset: 0
The triangle starts:
0: [ 1]
1: [ 2, 3, 2]
2: [ 5, 9, 10, 9, 5]
3: [ 14, 28, 34, 35, 34, 28, 14]
4: [ 42, 90, 117, 125, 126, 125, 117, 90, 42]
5: [132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132]
-
v := n -> `if`(n=1, 1, 0):
B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j),j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(B(2*n+1)^(2*n+1), 1),list), n=0..6);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := Diagonal[m[2 n + 1], 1];
Table[d[n], {n, 0, 6}] // Flatten
-
def T(n, k):
if k > n:
b = binomial(2*n+1, k - n - 1)
else:
b = binomial(2*n+1, n - k - 1)
return binomial(2*n+1, n+1) - b
for n in (0..6):
print([T(n, k) for k in (0..2*n)])
Showing 1-2 of 2 results.
Comments