Original entry on oeis.org
1, 7, 38, 187, 874, 3958, 17548, 76627, 330818, 1415650, 6015316, 25413342, 106853668, 447472972, 1867450648, 7770342787, 32248174258, 133530264682, 551793690628, 2276098026922, 9373521044908, 38546133661492, 158301250009768, 649328801880622
Offset: 0
-
a := n -> 2^(1 + 2*n)*((2*GAMMA(5/2 + n))/(sqrt(Pi)*GAMMA(2 + n)) - 1):
seq(a(n), n=0..23);
# alternative
A296769 := proc(n)
2^(2*n)*(doublefactorial(2*n+3)/(1+n)/doublefactorial(2*n)-2) ;
end proc:
seq(A296769(n),n=0..10) ; # R. J. Mathar, Jan 03 2018
A296666
Table read by rows, the even rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 6, 5, 2, 5, 14, 19, 20, 19, 14, 5, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42, 132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132
Offset: 0
0: [ 1]
1: [ 1, 2, 1]
2: [ 2, 5, 6, 5, 2]
3: [ 5, 14, 19, 20, 19, 14, 5]
4: [ 14, 42, 62, 69, 70, 69, 62, 42, 14]
5: [ 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42]
6: [132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132]
-
v := n -> `if`(n=1, 1, 0);
B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(B(2*n)^(2*n)), list), n=0..10);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := If[n == 0, {1}, Diagonal[m[2 n]]];
Table[d[n], {n, 0, 6}] // Flatten
-
def T(n, k):
if k > n:
b = binomial(2*n, k - n - 1)
else:
b = binomial(2*n, n + k + 1)
return binomial(2*n, n) - b
for n in (0..6):
print([T(n, k) for k in (0..2*n)])
A296664
Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 6, 5, 2, 5, 9, 10, 9, 5, 5, 14, 19, 20, 19, 14, 5, 14, 28, 34, 35, 34, 28, 14, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42
Offset: 0
The first few matrices M(n)^n are:
n=0 n=1 n=2 n=3 n=4
|1| |0 1| |1 0 1| |0 2 0 1| |2 0 3 0 1|
|1 0| |0 2 0| |2 0 3 0| |0 5 0 4 0|
|1 0 1| |0 3 0 2| |3 0 6 0 3|
|1 0 2 0| |0 4 0 5 0|
|1 0 3 0 2|
The triangle starts:
0: [ 1]
1: [ 1]
2: [ 1, 2, 1]
3: [ 2, 3, 2]
4: [ 2, 5, 6, 5, 2]
5: [ 5, 9, 10, 9, 5]
6: [ 5, 14, 19, 20, 19, 14, 5]
7: [14, 28, 34, 35, 34, 28, 14]
8: [14, 42, 62, 69, 70, 69, 62, 42, 14]
9: [42, 90, 117, 125, 126, 125, 117, 90, 42]
-
v := n -> `if`(n=1, 1, 0):
M := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(M(n)^n, n mod 2), list), n=0..10);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := If[n == 0, {1}, Diagonal[m[n], Mod[n, 2]]];
Table[d[n], {n, 0, 10}] // Flatten
-
def T(n, k):
h, e = n//2, n%2 == 0
a = binomial(n, h) if e else binomial(2*h+1, h+1)
if k > h:
b = binomial(n, k-h-1) if e else binomial(2*h+1, k-h-1)
else:
b = binomial(n, h+k+1) if e else binomial(2*h+1, h-k-1)
return a - b
for n in (0..9): print([T(n, k) for k in (0..2*(n//2))])
Showing 1-3 of 3 results.
Comments