Original entry on oeis.org
1, 4, 20, 96, 444, 2000, 8840, 38528, 166124, 710256, 3016056, 12736064, 53530840, 224107936, 935062544, 3890018816, 16141765964, 66829954736, 276135664664, 1138932645056, 4690042582664, 19285299964256, 79196366286704, 324835930747136, 1330905207444344
Offset: 0
A296662
Table read by rows, the odd rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
Original entry on oeis.org
1, 2, 3, 2, 5, 9, 10, 9, 5, 14, 28, 34, 35, 34, 28, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132, 429, 1001, 1430, 1638, 1703, 1715, 1716, 1715, 1703, 1638, 1430, 1001, 429
Offset: 0
The triangle starts:
0: [ 1]
1: [ 2, 3, 2]
2: [ 5, 9, 10, 9, 5]
3: [ 14, 28, 34, 35, 34, 28, 14]
4: [ 42, 90, 117, 125, 126, 125, 117, 90, 42]
5: [132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132]
-
v := n -> `if`(n=1, 1, 0):
B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j),j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(B(2*n+1)^(2*n+1), 1),list), n=0..6);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := Diagonal[m[2 n + 1], 1];
Table[d[n], {n, 0, 6}] // Flatten
-
def T(n, k):
if k > n:
b = binomial(2*n+1, k - n - 1)
else:
b = binomial(2*n+1, n - k - 1)
return binomial(2*n+1, n+1) - b
for n in (0..6):
print([T(n, k) for k in (0..2*n)])
A296664
Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 6, 5, 2, 5, 9, 10, 9, 5, 5, 14, 19, 20, 19, 14, 5, 14, 28, 34, 35, 34, 28, 14, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42
Offset: 0
The first few matrices M(n)^n are:
n=0 n=1 n=2 n=3 n=4
|1| |0 1| |1 0 1| |0 2 0 1| |2 0 3 0 1|
|1 0| |0 2 0| |2 0 3 0| |0 5 0 4 0|
|1 0 1| |0 3 0 2| |3 0 6 0 3|
|1 0 2 0| |0 4 0 5 0|
|1 0 3 0 2|
The triangle starts:
0: [ 1]
1: [ 1]
2: [ 1, 2, 1]
3: [ 2, 3, 2]
4: [ 2, 5, 6, 5, 2]
5: [ 5, 9, 10, 9, 5]
6: [ 5, 14, 19, 20, 19, 14, 5]
7: [14, 28, 34, 35, 34, 28, 14]
8: [14, 42, 62, 69, 70, 69, 62, 42, 14]
9: [42, 90, 117, 125, 126, 125, 117, 90, 42]
-
v := n -> `if`(n=1, 1, 0):
M := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(M(n)^n, n mod 2), list), n=0..10);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := If[n == 0, {1}, Diagonal[m[n], Mod[n, 2]]];
Table[d[n], {n, 0, 10}] // Flatten
-
def T(n, k):
h, e = n//2, n%2 == 0
a = binomial(n, h) if e else binomial(2*h+1, h+1)
if k > h:
b = binomial(n, k-h-1) if e else binomial(2*h+1, k-h-1)
else:
b = binomial(n, h+k+1) if e else binomial(2*h+1, h-k-1)
return a - b
for n in (0..9): print([T(n, k) for k in (0..2*(n//2))])
Showing 1-3 of 3 results.
Comments