A296666
Table read by rows, the even rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 6, 5, 2, 5, 14, 19, 20, 19, 14, 5, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42, 132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132
Offset: 0
0: [ 1]
1: [ 1, 2, 1]
2: [ 2, 5, 6, 5, 2]
3: [ 5, 14, 19, 20, 19, 14, 5]
4: [ 14, 42, 62, 69, 70, 69, 62, 42, 14]
5: [ 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42]
6: [132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132]
-
v := n -> `if`(n=1, 1, 0);
B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(B(2*n)^(2*n)), list), n=0..10);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := If[n == 0, {1}, Diagonal[m[2 n]]];
Table[d[n], {n, 0, 6}] // Flatten
-
def T(n, k):
if k > n:
b = binomial(2*n, k - n - 1)
else:
b = binomial(2*n, n + k + 1)
return binomial(2*n, n) - b
for n in (0..6):
print([T(n, k) for k in (0..2*n)])
A296662
Table read by rows, the odd rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
Original entry on oeis.org
1, 2, 3, 2, 5, 9, 10, 9, 5, 14, 28, 34, 35, 34, 28, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132, 429, 1001, 1430, 1638, 1703, 1715, 1716, 1715, 1703, 1638, 1430, 1001, 429
Offset: 0
The triangle starts:
0: [ 1]
1: [ 2, 3, 2]
2: [ 5, 9, 10, 9, 5]
3: [ 14, 28, 34, 35, 34, 28, 14]
4: [ 42, 90, 117, 125, 126, 125, 117, 90, 42]
5: [132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132]
-
v := n -> `if`(n=1, 1, 0):
B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j),j=0..n)], symmetric):
seq(convert(ArrayTools:-Diagonal(B(2*n+1)^(2*n+1), 1),list), n=0..6);
-
v[n_] := If[n == 1, 1, 0];
m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
d[n_] := Diagonal[m[2 n + 1], 1];
Table[d[n], {n, 0, 6}] // Flatten
-
def T(n, k):
if k > n:
b = binomial(2*n+1, k - n - 1)
else:
b = binomial(2*n+1, n - k - 1)
return binomial(2*n+1, n+1) - b
for n in (0..6):
print([T(n, k) for k in (0..2*n)])
Original entry on oeis.org
1, 1, 4, 7, 20, 38, 96, 187, 444, 874, 2000, 3958, 8840, 17548, 38528, 76627, 166124, 330818, 710256, 1415650, 3016056, 6015316, 12736064, 25413342, 53530840, 106853668, 224107936, 447472972, 935062544, 1867450648, 3890018816, 7770342787, 16141765964
Offset: 0
-
a := proc(n) if n mod 2 = 0 then ((n+2)/2)*GAMMA((n+1)/2)/GAMMA((n+2)/2)
else GAMMA((n+4)/2)/GAMMA((n+3)/2) fi; 2^n*(2*%/sqrt(Pi)-1) end:
seq(a(n), n=0..32);
-
a[n_] := 2^n ((n + 2 + Mod[n, 2]) Binomial[(n - 1 + 3 Mod[n, 2])/2, -1/2] - 1);
Table[a[n], {n, 0, 32}]
Showing 1-3 of 3 results.
Comments