A296664 Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).
1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 6, 5, 2, 5, 9, 10, 9, 5, 5, 14, 19, 20, 19, 14, 5, 14, 28, 34, 35, 34, 28, 14, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 90, 117, 125, 126, 125, 117, 90, 42, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42
Offset: 0
Examples
The first few matrices M(n)^n are: n=0 n=1 n=2 n=3 n=4 |1| |0 1| |1 0 1| |0 2 0 1| |2 0 3 0 1| |1 0| |0 2 0| |2 0 3 0| |0 5 0 4 0| |1 0 1| |0 3 0 2| |3 0 6 0 3| |1 0 2 0| |0 4 0 5 0| |1 0 3 0 2| The triangle starts: 0: [ 1] 1: [ 1] 2: [ 1, 2, 1] 3: [ 2, 3, 2] 4: [ 2, 5, 6, 5, 2] 5: [ 5, 9, 10, 9, 5] 6: [ 5, 14, 19, 20, 19, 14, 5] 7: [14, 28, 34, 35, 34, 28, 14] 8: [14, 42, 62, 69, 70, 69, 62, 42, 14] 9: [42, 90, 117, 125, 126, 125, 117, 90, 42]
Crossrefs
Programs
-
Maple
v := n -> `if`(n=1, 1, 0): M := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric): seq(convert(ArrayTools:-Diagonal(M(n)^n, n mod 2), list), n=0..10);
-
Mathematica
v[n_] := If[n == 1, 1, 0]; m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n]; d[n_] := If[n == 0, {1}, Diagonal[m[n], Mod[n, 2]]]; Table[d[n], {n, 0, 10}] // Flatten
-
Sage
def T(n, k): h, e = n//2, n%2 == 0 a = binomial(n, h) if e else binomial(2*h+1, h+1) if k > h: b = binomial(n, k-h-1) if e else binomial(2*h+1, k-h-1) else: b = binomial(n, h+k+1) if e else binomial(2*h+1, h-k-1) return a - b for n in (0..9): print([T(n, k) for k in (0..2*(n//2))])
Comments