Andrei Asinowski has authored 36 sequences. Here are the ten most recent ones:
A375923
Number of permutations of size n which are both two-clumped and co-two-clumped.
Original entry on oeis.org
1, 1, 2, 6, 24, 112, 582, 3272, 19550, 122628, 800392, 5400342, 37475474, 266412680, 1934033968, 14300538652, 107471798112, 819442325086, 6329551390064, 49465665347580, 390692732060804, 3115700976866356, 25067250869113332, 203317147838575616, 1661425311693158000
Offset: 0
Cf.
A342141 (number of two-clumped permutations).
Cf.
A001181 (Baxter numbers: number of (twisted-)Baxter permutations).
Cf.
A348351 (number of permutations which are both twisted-Baxter and co-twisted-Baxter).
A375913
Number of strong (=generic) guillotine rectangulations with n rectangles.
Original entry on oeis.org
1, 2, 6, 24, 114, 606, 3494, 21434, 138100, 926008, 6418576, 45755516, 334117246, 2491317430, 18919957430, 146034939362, 1143606856808, 9072734766636, 72827462660824, 590852491725920, 4840436813758832, 40009072880216344, 333419662183186932, 2799687668599080296
Offset: 1
- Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, Combinatorics of rectangulations: Old and new bijections, arXiv:2402.01483 [math.CO], 2024, page 37.
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, Discrete Comput. Geom., 70(1):51-122, 2023. Page 99, Table 3, entry "12".
Cf.
A342141 (number of strong (=generic) rectangulations).
Cf.
A001181 (Baxter numbers: number of weak (=diagonal) rectangulations).
Cf.
A006318 (Schröder numbers: number of weak (=diagonal) guillotine rectangulations).
A363813
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 295, 1114, 4166, 15390, 56167, 202738, 724813, 2570276, 9052494, 31702340, 110503497, 383691578, 1328039043, 4584708230, 15793983638, 54315199642, 186526735307, 639831906594, 2192754259993, 7509139583560, 25699765092254, 87913948206096
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (10,-37,62,-47,16,-2).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363812,
A006012.
-
CoefficientList[Series[(1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2),{x,0,27}],x] (* Stefano Spezia, Jun 24 2023 *)
A363811
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3224,-3834,2896,-1312,320,-32).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363812,
A363813,
A006012.
-
CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)
A363812
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363813,
A006012.
-
CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)
A363810
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363811,
A363812,
A363813,
A006012.
-
with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023
A363809
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0
- Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A078482,
A033321,
A363810,
A363811,
A363812,
A363813,
A006012.
A334719
a(n) is the total number of down-steps after the final up-step in all 4-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 4, 30, 250, 2245, 21221, 208129, 2098565, 21619910, 226593015, 2408424760, 25899375645, 281273231985, 3080585212120, 33986840371400, 377364606387005, 4213620859310140, 47284625533425750, 532996618440511710, 6032169040263819485, 68517222947120776290
Offset: 0
For n = 2, the a(2) = 30 is the total number of down-steps after the last up-step in UddddUdddd, UdddUddddd, UddUdddddd, UdUddddddd, UUdddddddd (thus, 4 + 5 + 6 + 7 + 8).
Cf.
A334682 (similar for 3-Dyck paths).
-
b:= proc(x, y) option remember; `if`(x=y, x,
`if`(y+40, b(x-1, y-1), 0))
end:
a:= n-> b(5*n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 4*n, (5*(5*n-4)*
(5*n-3)*(5*n-2)*(5*n-1)*n*(2869*n^3+5354*n^2+3239*n+634)*
a(n-1))/(8*(n-1)*(4*n+3)*(2*n+1)*(4*n+5)*(n+1)*
(2869*n^3-3253*n^2+1138*n-120)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020
-
a[n_] := Binomial[5*n + 6, n + 1]/(5*n + 6) - Binomial[5*n + 1, n]/(5*n + 1); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
a(n) = {binomial(5*(n+1)+1, n+1)/(5*(n+1)+1) - binomial(5*n+1, n)/(5*n+1)} \\ Andrew Howroyd, May 08 2020
-
[binomial(5*(n + 1) + 1, n + 1)/(5*(n + 1) + 1) - binomial(5*n + 1, n)/(5*n + 1) for n in srange(30)] # Benjamin Hackl, May 13 2020
A334680
a(n) is the total number of down-steps after the final up-step in all 2-Dyck paths of length 3*n (n up-steps and 2*n down-steps).
Original entry on oeis.org
0, 2, 9, 43, 218, 1155, 6324, 35511, 203412, 1184040, 6983925, 41652468, 250763464, 1521935948, 9301989144, 57203999295, 353701790376, 2197600497330, 13713291247635, 85907187607395, 540072341320050, 3406202392821375, 21545888897092560, 136655834260685220, 868897745157965328
Offset: 0
For n = 2, the a(2) = 9 is the total number of down-steps after the last up-step in UddUdd, UdUddd, UUdddd.
First order differences of
A001764.
-
alias(PS=ListTools:-PartialSums): A334680List := proc(m) local A, P, n;
A := [0,2]; P := [1,2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
A := [op(A), P[-1]] od; A end: A334680List(25); # Peter Luschny, Mar 26 2022
-
a[n_] := Binomial[3*n + 4, n + 1]/(3*n + 4) - Binomial[3*n + 1, n]/(3*n + 1); Array[a, 25, 0] (* Amiram Eldar, May 13 2020 *)
-
[(17 + 23*n)*binomial(3*n, n-1)/(2*n+2)/(2*n+3) for n in srange(30)] # Benjamin Hackl, May 13 2020
A334610
a(n) is the total number of down-steps after the final up-step in all 4_1-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 7, 58, 505, 4650, 44677, 443238, 4507461, 46744100, 492492330, 5257084420, 56734340091, 618001356458, 6785943435960, 75033214770640, 834733624099485, 9336542892778440, 104932793226255165, 1184421713336050590, 13421053387405062290, 152613573227667516580
Offset: 0
For n=1, a(1) = 7 is the total number of down-steps after the last up-step in Udddd, dUddd.
-
a[n_] := 2 * Binomial[5*n + 7, n + 1]/(5*n + 7) - 4 * Binomial[5*n + 2, n]/(5*n + 2); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
Comments