A363809
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0
- Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A078482,
A033321,
A363810,
A363811,
A363812,
A363813,
A006012.
A363810
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363811,
A363812,
A363813,
A006012.
-
with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023
A363811
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3224,-3834,2896,-1312,320,-32).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363812,
A363813,
A006012.
-
CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)
A363812
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363813,
A006012.
-
CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)
Showing 1-4 of 4 results.
Comments