Benjamin Hackl has authored 12 sequences. Here are the ten most recent ones:
A334651
a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.
Original entry on oeis.org
0, 7, 25, 155, 1195, 10282, 94591, 910480, 9054965, 92310075, 959473878, 10129715890, 108327387675, 1170975480360, 12773887368040, 140445927510832, 1554748206904325, 17314584431331025, 193849445090545875, 2180550929942519685, 24632294533221865028
Offset: 0
For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
[4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]
A334650
a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.
Original entry on oeis.org
0, 6, 31, 158, 975, 6639, 48050, 362592, 2820789, 22460120, 182141553, 1499143282, 12490923757, 105150960654, 892973346300, 7640934031920, 65813450140017, 570160918044288, 4964875184429660, 43431741548248440, 381496856026500220, 3363457643008999635
Offset: 0
For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
-
[3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020
A334646
a(n) is the total number of down steps between the 3rd and 4th up steps in all 3-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 0, 118, 409, 2368, 15750, 112716, 845295, 6551208, 52035714, 421286280, 3463401007, 28832656408, 242565115858, 2058945519936, 17611312647075, 151647023490480, 1313460091978458, 11435310622320552, 100019000856225156, 878443730199290560
Offset: 0
For n = 3, there is no 4th up step, a(3) = 118 enumerates the total number of down steps between the 3rd up step and the end of the path.
-
a[0] = a[1] = a[2] = 0; a[n_] := 3 * Sum[Binomial[4*j + 1, j] * Binomial[4*(n - j), n - j]/((4*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[3*sum([binomial(4*j + 1, j)*binomial(4*(n - j), n - j)/(4*j + 1)/(n - j + 1) for j in srange(1, 4)]) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334649
a(n) is the total number of down steps between the third and fourth up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 0, 236, 1034, 6094, 40996, 295740, 2231022, 17370163, 138473536, 1124433142, 9266859394, 77307427741, 651540030688, 5538977450256, 47442103851930, 409000732566399, 3546232676711824, 30903652601552272, 270529448396053576, 2377829916885541565
Offset: 0
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 52*(n==3) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334648
a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 34, 132, 722, 4638, 32416, 238956, 1827918, 14370595, 115384756, 942115942, 7798224226, 65286060253, 551838621972, 4702955036640, 40366238473530, 348631520142879, 3027590307082804, 26420699531880832, 231571468023697960, 2037650653547067005
Offset: 0
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
-
a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334647
a(n) is the total number of down steps between the first and second up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 5, 16, 78, 470, 3153, 22588, 169188, 1308762, 10374460, 83829856, 687929086, 5717602930, 48030047206, 407142435000, 3478286028840, 29917720938690, 258866494630164, 2251694583485824, 19677972159742360, 172694287830500440, 1521328368800877065
Offset: 0
For n = 1, the 3_1-Dyck paths are UDDD, DUDD. This corresponds to a(1) = 3 + 2 = 5 down steps between the 1st up step and the end of the path.
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 3 + 2 + 1 + 0 + 4 + 3 + 2 + 1 + 0 = 16 down steps between the 1st and 2nd up step.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - 2 * Binomial[4*n + 1, n]/(n + 1) + 6 * Binomial[4*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[3*binomial(4*n, n)/(n+1) - 2*binomial(4*n+1, n)/(n+1) + 6*binomial(4*(n-1), n-1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334643
a(n) is the total number of down steps between the second and third up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 0, 16, 53, 209, 963, 4816, 25367, 138531, 777041, 4449511, 25901655, 152818458, 911755012, 5491420104, 33343242196, 203881825163, 1254342228285, 7759025239189, 48227078649155, 301056318504165, 1886647802277315, 11864793375611820, 74854437302309175
Offset: 0
For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 4 + 3 + 2 + 1 + 1 + 2 + 3 = 16 down steps between the 2nd up step and the end of the path.
-
[binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2, j)*binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 7*(n==2) if n >= 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334645
a(n) is the total number of down steps between the 2nd and 3rd up steps in all 3-Dyck paths of length 4*n. A 3-Dyck path is a nonnegative lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0.
Original entry on oeis.org
0, 0, 18, 52, 277, 1752, 12120, 88692, 674751, 5282160, 42267384, 344152080, 2842055359, 23746693240, 200383750632, 1705243729560, 14617677294675, 126106202849760, 1094034474058488, 9538676631305712, 83536778390997780, 734521734171474400, 6481894477750488160
Offset: 0
For n = 2, the 3-Dyck paths are UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 3 + 4 + 5 + 6 = 18 down steps between the 2nd up step and the end of the path.
-
[3*sum([binomial(4*j + 1, j)*binomial(4*(n - j), n - j)/(4*j + 1)/(n - j + 1) for j in srange(1, 3)]) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334644
a(n) is the total number of down steps between the third and fourth up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 0, 0, 83, 299, 1263, 6076, 31307, 168561, 936161, 5321611, 30804795, 180939408, 1075636912, 6459103704, 39120216196, 238692219923, 1465783144605, 9052278085129, 56185368932615, 350293215459915, 2192731008315015, 13775745283576920, 86831135890324875
Offset: 0
-
[binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2, j) * binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 30*(n==3) if n >= 3 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334642
a(n) is the total number of down steps between the first and second up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 3, 9, 32, 139, 669, 3430, 18360, 101403, 573551, 3305445, 19340100, 114579348, 685962172, 4143459504, 25220816752, 154545611355, 952583230899, 5902090839715, 36738469359480, 229636903762035, 1440759023752125, 9070230371741490, 57278432955350880
Offset: 0
For n = 1, the 2_1-Dyck paths are UDD, DUD. This corresponds to a(1) = 2 + 1 = 3 down steps between the 1st up step and the end of the path.
For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 0 + 1 + 2 + 3 + 2 + 1 + 0 = 9 down steps between the 1st and 2nd up step.
-
a[0] = 0; a[n_] := 2 * Binomial[3*n, n]/(n + 1) - Binomial[3*n + 1, n]/(n + 1) + 4 * Binomial[3*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
-
a(n) = if (n==0, 0, 2*binomial(3*n, n)/(n+1) - binomial(3*n+1, n)/(n+1) + 4*binomial(3*(n-1), n-1)/n - 2*(n==1)); \\ Michel Marcus, May 09 2020
Comments