A334647
a(n) is the total number of down steps between the first and second up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 5, 16, 78, 470, 3153, 22588, 169188, 1308762, 10374460, 83829856, 687929086, 5717602930, 48030047206, 407142435000, 3478286028840, 29917720938690, 258866494630164, 2251694583485824, 19677972159742360, 172694287830500440, 1521328368800877065
Offset: 0
For n = 1, the 3_1-Dyck paths are UDDD, DUDD. This corresponds to a(1) = 3 + 2 = 5 down steps between the 1st up step and the end of the path.
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 3 + 2 + 1 + 0 + 4 + 3 + 2 + 1 + 0 = 16 down steps between the 1st and 2nd up step.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - 2 * Binomial[4*n + 1, n]/(n + 1) + 6 * Binomial[4*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[3*binomial(4*n, n)/(n+1) - 2*binomial(4*n+1, n)/(n+1) + 6*binomial(4*(n-1), n-1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334646
a(n) is the total number of down steps between the 3rd and 4th up steps in all 3-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 0, 118, 409, 2368, 15750, 112716, 845295, 6551208, 52035714, 421286280, 3463401007, 28832656408, 242565115858, 2058945519936, 17611312647075, 151647023490480, 1313460091978458, 11435310622320552, 100019000856225156, 878443730199290560
Offset: 0
For n = 3, there is no 4th up step, a(3) = 118 enumerates the total number of down steps between the 3rd up step and the end of the path.
-
a[0] = a[1] = a[2] = 0; a[n_] := 3 * Sum[Binomial[4*j + 1, j] * Binomial[4*(n - j), n - j]/((4*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[3*sum([binomial(4*j + 1, j)*binomial(4*(n - j), n - j)/(4*j + 1)/(n - j + 1) for j in srange(1, 4)]) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334648
a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 34, 132, 722, 4638, 32416, 238956, 1827918, 14370595, 115384756, 942115942, 7798224226, 65286060253, 551838621972, 4702955036640, 40366238473530, 348631520142879, 3027590307082804, 26420699531880832, 231571468023697960, 2037650653547067005
Offset: 0
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
-
a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334649
a(n) is the total number of down steps between the third and fourth up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 0, 236, 1034, 6094, 40996, 295740, 2231022, 17370163, 138473536, 1124433142, 9266859394, 77307427741, 651540030688, 5538977450256, 47442103851930, 409000732566399, 3546232676711824, 30903652601552272, 270529448396053576, 2377829916885541565
Offset: 0
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 52*(n==3) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334608
a(n) is the total number of down-steps after the final up-step in all 3_1-Dyck paths of length 4*n (n up-steps and 3n down-steps).
Original entry on oeis.org
0, 5, 34, 236, 1714, 12922, 100300, 796572, 6443536, 52909593, 439896626, 3695917940, 31331587252, 267669458420, 2302188456120, 19918434257052, 173240112503520, 1513821095788420, 13283883136738344, 117009704490121520, 1034217260142108570, 9169842145476773250, 81537271617856588380
Offset: 0
For n=1, a(1)=5 is the total number of down-steps after the last up-step in Uddd, dUdd.
Cf.
A002293,
A007226,
A007228,
A334609,
A334645,
A334646,
A334647,
A334648,
A334649,
A334680,
A334682,
A334785.
-
a[n_] := 2 * Binomial[4*n + 6, n + 1]/(4*n + 6) - 4 * Binomial[4*n + 2, n]/(4*n + 2); Array[a, 23, 0] (* Amiram Eldar, May 13 2020 *)
-
[2*binomial(4*(n + 1) + 2, n + 1)/(4*(n + 1) + 2) - 4*binomial(4*n + 2, n)/(4*n + 2) for n in srange(30)] # Benjamin Hackl, May 13 2020
Showing 1-5 of 5 results.
Comments