A334610
a(n) is the total number of down-steps after the final up-step in all 4_1-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 7, 58, 505, 4650, 44677, 443238, 4507461, 46744100, 492492330, 5257084420, 56734340091, 618001356458, 6785943435960, 75033214770640, 834733624099485, 9336542892778440, 104932793226255165, 1184421713336050590, 13421053387405062290, 152613573227667516580
Offset: 0
For n=1, a(1) = 7 is the total number of down-steps after the last up-step in Udddd, dUddd.
-
a[n_] := 2 * Binomial[5*n + 7, n + 1]/(5*n + 7) - 4 * Binomial[5*n + 2, n]/(5*n + 2); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
A334611
a(n) is the total number of down-steps after the final up-step in all 4_2-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 9, 82, 747, 7065, 69098, 694272, 7127865, 74468546, 789265125, 8466019380, 91736269053, 1002710879409, 11042713886256, 122413333216960, 1364880618458565, 15296452128008100, 172218124701600741, 1946960139291303222, 22092883135853433030, 251545025683283255770
Offset: 0
For n=1, a(1) = 9 is the total number of down-steps after the last up-step in Udddd, dUddd, ddUdd.
-
a[n_] := 3 * Binomial[5*n + 8, n + 1]/(5*n + 8) - 9 * Binomial[5*n + 3, n]/(5*n + 3); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
A334612
a(n) is the total number of down-steps after the final up-step in all 4_3-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 10, 100, 955, 9296, 92704, 944636, 9801929, 103262436, 1101802764, 11883775540, 129365990061, 1419569592748, 15686292728288, 174399501150236, 1949516926153045, 21898270953801720, 247045453792464294, 2797968888077323968, 31801559116255638374, 362622937212800684560
Offset: 0
For n = 1, a(1) = 10 is the total number of down-steps after the last up-step in Udddd, dUddd, ddUdd, dddUd.
-
a[n_] := 4 * Binomial[5*n + 9, n + 1]/(5*n + 9) - 16 * Binomial[5*n + 4, n]/(5*n + 4); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
A334651
a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.
Original entry on oeis.org
0, 7, 25, 155, 1195, 10282, 94591, 910480, 9054965, 92310075, 959473878, 10129715890, 108327387675, 1170975480360, 12773887368040, 140445927510832, 1554748206904325, 17314584431331025, 193849445090545875, 2180550929942519685, 24632294533221865028
Offset: 0
For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
[4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]
Showing 1-4 of 4 results.
Comments