A050182 a(n) = T(2*n+4, n), array T as in A051168 (a count of Lyndon words).
0, 1, 3, 12, 40, 143, 497, 1768, 6288, 22610, 81686, 297160, 1086384, 3991995, 14732005, 54587280, 202995232, 757398510, 2834502346, 10637507400, 40023606896, 150946230006, 570534474698, 2160865067312, 8199711007200
Offset: 0
Keywords
Crossrefs
A diagonal of the square array described in A051168.
Programs
-
Maple
A050182 := proc(n) binomial(2*n+4,n) ; if type(n,'even') then %-binomial(n+2,n/2) ; end if; %/(2*n+4) ; end proc: seq(A050182(n),n=0..40) ; # R. J. Mathar, Oct 28 2021
Formula
a(n) = binomial(2*n + 4, n)/(2*n + 4), if n is odd, and a(n) = (binomial(2*n + 4, n) - binomial(n + 2, n/2))/(2*n + 4), if n is even. - Petros Hadjicostas, Jul 27 2020
D-finite with recurrence -(n+4) *(n+3) *(11*n-8)*a(n) +10 *(n+3) *(7*n^2+6*n-10) *a(n-1) -60 *n *(n^2-n-5)*a(n-2) -40 *n *(7*n^2+6*n-10) *a(n-3) +16*(n-1) *(13*n+4) *(2*n-3) *a(n-4)=0. - R. J. Mathar, Oct 28 2021
Comments