cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050182 a(n) = T(2*n+4, n), array T as in A051168 (a count of Lyndon words).

Original entry on oeis.org

0, 1, 3, 12, 40, 143, 497, 1768, 6288, 22610, 81686, 297160, 1086384, 3991995, 14732005, 54587280, 202995232, 757398510, 2834502346, 10637507400, 40023606896, 150946230006, 570534474698, 2160865067312, 8199711007200
Offset: 0

Views

Author

Keywords

Comments

We have A051168(n,k) = (1/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d, k/d) for 0 <= k <= n with n > 0. If n is odd, gcd(2*n + 4, n) = 1. If n is even, gcd(2*n + 4, n) = 2 or 4, but mu(2) = -1 and mu(4) = 0. From these facts, we can prove the formula below. - Petros Hadjicostas, Jul 27 2020

Crossrefs

A diagonal of the square array described in A051168.

Programs

  • Maple
    A050182 := proc(n)
        binomial(2*n+4,n) ;
        if type(n,'even') then
            %-binomial(n+2,n/2) ;
        end if;
        %/(2*n+4) ;
    end proc:
    seq(A050182(n),n=0..40) ; # R. J. Mathar, Oct 28 2021

Formula

a(n) = binomial(2*n + 4, n)/(2*n + 4), if n is odd, and a(n) = (binomial(2*n + 4, n) - binomial(n + 2, n/2))/(2*n + 4), if n is even. - Petros Hadjicostas, Jul 27 2020
D-finite with recurrence -(n+4) *(n+3) *(11*n-8)*a(n) +10 *(n+3) *(7*n^2+6*n-10) *a(n-1) -60 *n *(n^2-n-5)*a(n-2) -40 *n *(7*n^2+6*n-10) *a(n-3) +16*(n-1) *(13*n+4) *(2*n-3) *a(n-4)=0. - R. J. Mathar, Oct 28 2021