A050190 T(n,5), array T as in A050186; a count of aperiodic binary words.
0, 6, 21, 56, 126, 250, 462, 792, 1287, 2002, 3000, 4368, 6188, 8568, 11628, 15500, 20349, 26334, 33649, 42504, 53125, 65780, 80730, 98280, 118755, 142500, 169911, 201376, 237336, 278256, 324625, 376992, 435897, 501942
Offset: 5
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,2,-8,12,-8,2,-1,4,-6,4, -1).
Programs
-
Magma
[n*floor(Binomial(n-1, 4)/5): n in [5..40]]; // G. C. Greubel, Nov 25 2017
-
Mathematica
Table[n*Floor[Binomial[n - 1, 4]/5], {n, 5, 50}] (* G. C. Greubel, Nov 25 2017 *) Drop[CoefficientList[Series[(x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2), {x, 0, 50}], x], 4] (* G. C. Greubel, Nov 27 2017 *)
-
PARI
for(n=5,40, print1(n*floor(binomial(n-1, 4)/5), ", ")) \\ G. C. Greubel, Nov 25 2017
-
PARI
x='x+O('x^30); concat([0], Vec((x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2))) \\ G. C. Greubel, Nov 27 2017
Formula
a(n) = n * A051170(n).
From Ralf Stephan, Aug 18 2004: (Start)
G.f.: (x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2). (corrected by G. C. Greubel, Nov 27 2017)
a(n) = A000389(n) - [5 divides n]*n/5.
a(n) = n*floor(C(n-1, 4)/5). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 2*a(n-5) - 8*a(n-6) + 12*a(n-7) - 8*a(n-8) + 2*a(n-9) - a(n-10) + 4*a(n-11) - 6*a(n-12) + 4*a(n-13) - a(n-14). - R. J. Mathar, May 20 2013
Extensions
More terms from Ralf Stephan, Aug 18 2004