cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050190 T(n,5), array T as in A050186; a count of aperiodic binary words.

Original entry on oeis.org

0, 6, 21, 56, 126, 250, 462, 792, 1287, 2002, 3000, 4368, 6188, 8568, 11628, 15500, 20349, 26334, 33649, 42504, 53125, 65780, 80730, 98280, 118755, 142500, 169911, 201376, 237336, 278256, 324625, 376992, 435897, 501942
Offset: 5

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n*floor(Binomial(n-1, 4)/5): n in [5..40]]; // G. C. Greubel, Nov 25 2017
    
  • Mathematica
    Table[n*Floor[Binomial[n - 1, 4]/5], {n, 5, 50}] (* G. C. Greubel, Nov 25 2017 *)
    Drop[CoefficientList[Series[(x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2), {x, 0, 50}], x], 4] (* G. C. Greubel, Nov 27 2017 *)
  • PARI
    for(n=5,40, print1(n*floor(binomial(n-1, 4)/5), ", ")) \\ G. C. Greubel, Nov 25 2017
    
  • PARI
    x='x+O('x^30); concat([0], Vec((x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2))) \\ G. C. Greubel, Nov 27 2017

Formula

a(n) = n * A051170(n).
From Ralf Stephan, Aug 18 2004: (Start)
G.f.: (x^5*(3 + x^2 + x^3)*(2 - x + 2*x^2 + x^3 + x^4))/((1 - x)^4*(1 - x^5)^2). (corrected by G. C. Greubel, Nov 27 2017)
a(n) = A000389(n) - [5 divides n]*n/5.
a(n) = n*floor(C(n-1, 4)/5). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 2*a(n-5) - 8*a(n-6) + 12*a(n-7) - 8*a(n-8) + 2*a(n-9) - a(n-10) + 4*a(n-11) - 6*a(n-12) + 4*a(n-13) - a(n-14). - R. J. Mathar, May 20 2013

Extensions

More terms from Ralf Stephan, Aug 18 2004