A050225 1/3-Smith numbers.
6969, 19998, 36399, 39693, 66099, 69663, 69897, 89769, 99363, 99759, 109989, 118899, 181998, 191799, 199089, 297099, 306939, 333399, 336963, 339933, 363099, 396363, 397998, 399333, 399729, 588969, 606666, 606909, 639633, 660693, 666633
Offset: 1
Examples
6969 is a 3^(-1) Smith number because the digit sum of 6969, i.e., S(6969) = 6 + 9 + 6 + 9 = 30, which is equal to 3 times the sum of the digits of its prime factors, i.e., 3*Sp(6969) = 3 * Sp(3 * 23 * 101) = 3 *( 3 + 2 + 3 + 1 + 0 + 1) = 30.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers.
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Wayne L. McDaniel, The Existence of infinitely Many k-Smith numbers, Fibonacci Quarterly, Vol. 25, No. 1 (1987), pp. 76-80.
- Eric Weisstein's World of Mathematics, Smith Numbers.
Programs
-
Mathematica
digSum[n_] := Plus @@ IntegerDigits[n]; thirdSmithQ[n_] := CompositeQ[n] && 3 * Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; Select[Range[666633], thirdSmithQ] (* Amiram Eldar, Aug 23 2020 *)
Extensions
More terms from Shyam Sunder Gupta, Mar 11 2005