A050269 Smallest value a for Diophantine 1-doubles (a,b) ordered by smallest b.
1, 2, 3, 4, 5, 1, 3, 6, 7, 8, 9, 2, 4, 10, 11, 12, 1, 8, 13, 3, 5, 14, 15, 16, 17, 4, 6, 18, 3, 8, 19, 20, 21, 1, 2, 5, 7, 12, 15, 22, 23, 24, 25, 6, 8, 26, 27, 4, 12, 28, 29, 7, 9, 30, 3, 16, 31, 32, 1, 24, 33, 8, 10, 34, 35, 36, 5, 16, 37, 2, 3, 9, 11, 21, 24, 38, 39, 4, 20, 40, 41
Offset: 1
Keywords
Links
- P. Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
- Eric Weisstein's World of Mathematics, Diophantus Property.
Crossrefs
Cf. A050270.
Programs
-
Mathematica
m = 0; Do[If[IntegerQ[Sqrt[a*b + 1]], an[m++] = a], {b, 2, 43}, {a, 1, b}]; Array[an, 81, 0] (* Jean-François Alcover, Feb 04 2019 *)
-
PARI
an=vector(81); m=0; for(b=2,43, for(a=1,b, if(issquare(a*b+1), an[ m++ ]=a))); an