A050314 Triangle: a(n,k) = number of partitions of n whose xor-sum is k.
1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 2, 0, 2, 0, 1, 0, 3, 0, 2, 0, 2, 4, 0, 3, 0, 2, 0, 2, 0, 4, 0, 4, 0, 2, 0, 5, 6, 0, 5, 0, 4, 0, 6, 0, 1, 0, 8, 0, 6, 0, 8, 0, 6, 0, 2, 10, 0, 9, 0, 11, 0, 8, 0, 2, 0, 2, 0, 11, 0, 14, 0, 12, 0, 12, 0, 2, 0, 5, 16, 0, 18, 0, 15, 0, 16, 0, 4, 0, 6, 0, 2, 0, 23, 0, 20, 0, 20, 0, 19, 0, 8, 0, 6, 0, 5
Offset: 0
Examples
Triangle: a(n,k) begins: 1; 0, 1; 1, 0, 1; 0, 1, 0, 2; 2, 0, 2, 0, 1; 0, 3, 0, 2, 0, 2; 4, 0, 3, 0, 2, 0, 2; 0, 4, 0, 4, 0, 2, 0, 5; 6, 0, 5, 0, 4, 0, 6, 0, 1; 0, 8, 0, 6, 0, 8, 0, 6, 0, 2; 10, 0, 9, 0, 11, 0, 8, 0, 2, 0, 2; 0, 11, 0, 14, 0, 12, 0, 12, 0, 2, 0, 5; 16, 0, 18, 0, 15, 0, 16, 0, 4, 0, 6, 0, 2; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
with(Bits): b:= proc(n, i, k) option remember; `if`(n=0, x^k, `if`(i<1, 0, add(b(n-i*j, i-1, `if`(j::even, k, Xor(i, k))), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): seq(T(n), n=0..20); # Alois P. Heinz, Dec 01 2015
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, x^k, If[i<1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 24 2016, after Alois P. Heinz *)