A050343 Number of partitions of n into distinct parts with 2 levels of parentheses.
1, 1, 1, 4, 7, 14, 29, 57, 110, 217, 417, 794, 1513, 2860, 5373, 10063, 18740, 34750, 64221, 118199, 216775, 396297, 722136, 1311888, 2376575, 4293407, 7735941, 13903985, 24929763, 44595606, 79598328, 141770576, 251984463, 446991405, 791391545, 1398551523
Offset: 0
Keywords
Examples
4 = ((4)) = ((3))+((1)) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1)))) end: h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(h(i, i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]] ; h[n_, i_] := h[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*h[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[ Binomial[ h[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 17 2015, after Alois P. Heinz *)
Formula
Weigh transform of A050342.