cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050343 Number of partitions of n into distinct parts with 2 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 4, 7, 14, 29, 57, 110, 217, 417, 794, 1513, 2860, 5373, 10063, 18740, 34750, 64221, 118199, 216775, 396297, 722136, 1311888, 2376575, 4293407, 7735941, 13903985, 24929763, 44595606, 79598328, 141770576, 251984463, 446991405, 791391545, 1398551523
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Examples

			4 = ((4)) = ((3))+((1)) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
        end:
    h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(h(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]] ; h[n_, i_] := h[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*h[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[ Binomial[ h[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 17 2015, after Alois P. Heinz *)

Formula

Weigh transform of A050342.