A050344 Number of partitions of n into distinct parts with 3 levels of parentheses.
1, 1, 1, 5, 11, 25, 60, 141, 321, 742, 1688, 3810, 8580, 19225, 42844, 95156, 210480, 463866, 1018957, 2231114, 4870400, 10601805, 23015117, 49833471, 107636878, 231940988, 498671281, 1069826434, 2290402343, 4893782240, 10436263572, 22214850439, 47202869437
Offset: 0
Keywords
Examples
4 = (((4))) = (((3)))+(((1))) = (((3))+((1))) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1)))) end: h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i))) end: f:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(h(i, i), j)*f(n-i*j, i-1), j=0..n/i))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(f(i, i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
-
Mathematica
g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, g[n, i - 1] + If[i > n, 0, g[n - i, i - 1]]]]; h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i, i], j]* h[n - i*j, i - 1], {j, 0, n/i}]]]; f[n_, i_] := f[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[h[i, i], j]* f[n - i*j, i - 1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[f[i, i], j]* b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
Formula
Weigh transform of A050343.