A050345 Number of ways to factor n into distinct factors with one level of parentheses.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 15, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 12, 3, 12, 1, 6, 3, 12, 1, 37, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3, 1, 31, 3, 3, 3, 13, 1, 31, 3, 6, 3, 3
Offset: 1
Keywords
Examples
12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2)*(2). From _Gus Wiseman_, Apr 26 2025: (Start) This is the number of ways to partition a factorization of n (counted by A001055) into a set of sets. For example, the a(12) = 6 choices are: {{2},{2,3}} {{2},{6}} {{3},{4}} {{2,6}} {{3,4}} {{12}} (End)
Links
- R. J. Mathar, Table of n, a(n) for n = 1..2519
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d, Rest[Divisors[n]]}]]; sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]]; Table[Sum[Length[Select[mps[y], UnsameQ@@#&&And@@UnsameQ@@@#&]], {y,facs[n]}],{n,30}] (* Gus Wiseman, Apr 26 2025 *)
Comments