A050367 Number of ways to factor n into 2 kinds of 2, 3 kinds of 3, ...
1, 2, 3, 7, 5, 12, 7, 20, 15, 20, 11, 45, 13, 28, 30, 59, 17, 66, 19, 75, 42, 44, 23, 150, 40, 52, 64, 105, 29, 150, 31, 162, 66, 68, 70, 270, 37, 76, 78, 250, 41, 210, 43, 165, 165, 92, 47, 477, 77, 180, 102, 195, 53, 326, 110, 350, 114, 116, 59, 630, 61, 124, 231
Offset: 1
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
Programs
-
PARI
\\ modeled on Michael Somos's program for A007896 {a(n) = my(A, v, w, m); if( n<1, 0, \\ define unit vector v = [1, 0, 0, ...] of length n v = vector(n, k, k==1); for(k=2, n, m = #digits(n, k) - 1; \\ expand 1/(1-x)^k out far enough A = (1 - x)^ -k + x * O(x^m); \\ w = zero vector of length n w = vector(n); \\ convert A to a vector for(i=0, m, w[k^i] = polcoeff(A, i)); \\ build the answer v = dirmul(v, w) ); v[n] ) }; \\ produce the sequence vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
Formula
Dirichlet g.f.: Product_{n>=2} 1/(1-1/n^s)^n.