cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050374 Number of ordered factorizations of n into composite factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 1, 0, 3, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 1, 1, 1, 0, 5, 1, 1, 1, 1, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 1, 5, 1, 1, 0, 1, 1, 1, 0, 7, 0, 1, 1, 1, 1, 1, 0, 5, 2, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 1, 1, 1, 1, 10, 0, 1, 1, 4, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A005171, all but the first term in A005171 turned negative. - R. J. Mathar, Jul 15 2010

Crossrefs

Programs

  • Maple
    read(transforms):
    [1, seq(-A005171(n), n=2..100)] ;
    a050374 := DIRICHLETi(%) ; # R. J. Mathar, May 26 2017
  • PARI
    A050374(n) = if(1==n,n,sumdiv(n,d,if(dA050374(d),0))); \\ Antti Karttunen, Oct 20 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of composite numbers.
a(n) = A050375(A101296(n)). - R. J. Mathar, May 26 2017
For n >= 1, a(p^n) = A000045(n-1), for any prime p.
For n >= 0, a(A002110(n)) = A032032(n).