A050381 Number of series-reduced planted trees with n leaves of 2 colors.
2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1
Keywords
Examples
For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- N. J. A. Sloane, Transforms
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Mathematica
terms = 22; B[x_] = x O[x]^(terms+1); A[x_] = 1/(1 - x + B[x])^2; Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}]; Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *) slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]]; Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
-
PARI
{a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */
Formula
Doubles (index 2+) under EULER transform.
Product_{k>=1} (1-x^k)^-a(k) = 1 + a(1)*x + Sum_{k>=2} 2*a(k)*x^k. - Michael Somos, Aug 07 2017
a(n) ~ c * d^n / n^(3/2), where d = 6.158893517087396289837838459951206775682824030495453326610366016992093939... and c = 0.1914250508201011360729769525164141605187995730026600722369002... - Vaclav Kotesovec, Aug 17 2018
Comments