A050384 Nonprimes such that n and phi(n) are relatively prime.
1, 15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95, 115, 119, 123, 133, 141, 143, 145, 159, 161, 177, 185, 187, 209, 213, 215, 217, 221, 235, 247, 249, 255, 259, 265, 267, 287, 295, 299, 303, 319, 321, 323, 329, 335, 339, 341, 345, 365, 371, 377, 391, 393, 395, 403
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Joel E. Cohen, Conjectures about Primes and Cyclic Numbers, arXiv:2508.08335 [math.NT], 2025. See pp. 2, 6.
- Peter Luschny, Strong coprimality, 2011.
Programs
-
Maple
isStrongPrimeTo := (n, k) -> (igcd(n, k) = 1) and not (irem(n-1, k) = 0): isStrongCyclic := n -> isStrongPrimeTo(n, numtheory:-phi(n)): [1, op(select(isStrongCyclic, [$(2..404)]))]; # Peter Luschny, Dec 13 2021
-
Mathematica
Select[Range[450], !PrimeQ[#] && GCD[#, EulerPhi[#]] == 1&] (* Harvey P. Dale, Jan 31 2011 *)
-
PARI
is(n)=!isprime(n) && gcd(eulerphi(n),n)==1 \\ Charles R Greathouse IV, Apr 15 2015
-
Sage
def isStrongPrimeTo(n, m): return gcd(n, m) == 1 and not m.divides(n-1) def isStrongCyclic(n): return isStrongPrimeTo(n, euler_phi(n)) [1] + [n for n in (1..403) if isStrongCyclic(n)] # Peter Luschny, Nov 14 2018
Comments