cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050461 a(n) = Sum_{d|n, n/d=1 mod 4} d^2.

Original entry on oeis.org

1, 4, 9, 16, 26, 36, 49, 64, 82, 104, 121, 144, 170, 196, 234, 256, 290, 328, 361, 416, 442, 484, 529, 576, 651, 680, 738, 784, 842, 936, 961, 1024, 1090, 1160, 1274, 1312, 1370, 1444, 1530, 1664, 1682, 1768, 1849, 1936, 2132, 2116, 2209
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example. - R. J. Mathar, Dec 20 2011

Crossrefs

Programs

  • Haskell
    a050461 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 1]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Maple
    A050461 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d^2 ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050461(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#^2&]; Array[a, 50] (* Jean-François Alcover, Feb 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 1) * d^2); \\ Amiram Eldar, Nov 05 2023

Formula

a(n) = A050470(n) + A050465(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050465(n).
a(n) = (A050470(n) + A076577(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/64 + 7*zeta(3)/16 = 1.010372968262... . (End)