A050482 Sum of remainders when n-th prime is divided by all preceding integers.
0, 1, 4, 8, 22, 28, 51, 64, 98, 151, 167, 233, 297, 325, 403, 505, 635, 645, 790, 904, 923, 1113, 1244, 1422, 1654, 1800, 1888, 2056, 2098, 2256, 2849, 3066, 3326, 3450, 3969, 4045, 4329, 4696, 5014, 5325, 5767, 5759, 6499, 6565, 6898
Offset: 1
Keywords
Examples
a(4) = 8 because remainders when 7 is divided by 1..6 are 0,1,1,3,2,1, which add to 8. a(2) = 3 mod (3-1) = 1. a(3) = (5 mod (5-1)) + (5 mod (5-2)) + (5 mod (5-3)) = 2 + 1 + 1 = 4.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A050482 := proc(n) local a,i; a := 0; for i from 1 to ithprime(n)-1 do a := a+(ithprime(n) mod i); od: end;
-
Mathematica
Table[Sum[Mod[Prime[n],k],{k,Prime[n]-1}],{n,45}] (* James C. McMahon, Feb 08 2024 *)
-
PARI
a(n)=my(p=prime(n));sum(k=2, p, p%k) \\ Charles R Greathouse IV, Jun 03 2013
-
Python
from math import isqrt from sympy import prime def A050482(n): return (p:=prime(n))**2+((s:=isqrt(p))**2*(s+1)-sum((q:=p//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Nov 01 2023
Comments