cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050601 Recursion counts for summation table A003056 with formula a(0,x) = x, a(y,0) = y, a(y,x) = a((y XOR x),2*(y AND x)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 1, 3, 3, 2, 2, 3, 3, 1, 0, 0, 2, 1, 3, 2, 1, 2, 3, 1, 2, 0, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 3, 2, 3, 1, 3, 1, 3, 1, 3, 2, 3, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 0, 0, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 22 1999

Keywords

Crossrefs

Cf. A050600, A050602, A003056, A048720 (for the Maple implementation of trinv and XORnos, ANDnos)

Programs

  • Maple
    add2c := proc(a,b) option remember; if((0 = a) or (0 = b)) then RETURN(0); else RETURN(1+add_c(XORnos(a,b),2*ANDnos(a,b))); fi; end;
  • Mathematica
    trinv[n_] := Floor[(1/2)*(Sqrt[8*n + 1] + 1)];
    Sum2c[a_, b_] := Sum2c[a, b] = If[0 == a || 0 == b, Return[0], Return[ Sum2c[BitXor[a, b], 2*BitAnd[a, b]] + 1]];
    a[n_] := Sum2c[n - (1/2)*trinv[n]*(trinv[n] - 1), (trinv[n] - 1)*(trinv[ n]/2 + 1) - n];
    Table[a[n], {n, 0, 120}](* Jean-François Alcover, Mar 07 2016, adapted from Maple *)

Formula

a(n) -> add2c( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) )